

a Data Science Analysis

100 S 10 S 10 S

Service Predict Tourism with ML

Create Insights for Tanzania

Use Dataset of Statistics Bureau

Build accurate ML Model

Choose Metrics & Optimizations

Master Data Quality Issues

Generate Action-Items

Data Cleaning

a) Handle missing values

b) Check for outliers

c) Encode categorical variables

d) Normalize numerical features

	ID	total_female	total_male	package_transport_int	package_accomodation	package_food	package_transport_tz	package_sightseeing	pack
0	tour_0	1.0	1.0	No	No	No	No	No	
1	tour_10	1.0	0.0	No	No	No	No	No	
2	tour_1000	0.0	1.0	No	No	No	No	No	
3	tour_1002	1.0	1.0	No	Yes	Yes	Yes	Yes	
4	tour_1004	1.0	0.0	No	No	No	No	No	

5 rows × 156 columns

√ 1.3s

mitssing_values		
√ 0.0s		
ID	0	
country	0	
age_group	0	
travel_with	1114	
total_female	3	
total_male	5	
purpose	0	
main_activity	0	
info_source 🦱	0	
tour_arrangement	0	
package_transport_int	0	
package_accomodation	0	
package_food	0	
package_transport_tz	0	
package_sightseeing	0	
package_guided_tour	0	
package_insurance	0	
night_mainland	0	
night_zanzibar	0	
payment_mode	0	
first_trip_tz	0	
most_impressing	313	
total_cost	0	
dtype: int64		

missing values

[2]

```
# Step 1a: Handle missing values based on the strategies di
```

```
# Impute 'travel_with' and 'most_impressing' with 'Unknown'
df['travel_with'].fillna('Unknown', inplace=True)
df['most_impressing'].fillna('Unknown', inplace=True)
```

```
# Verify if all missing values are handled
df.isnull().sum()
```

```
√ 0.0s
```

Step 1b: Identify and remove duplicat
duplicates = df.duplicated().sum()

```
# Remove duplicates if any
if duplicates > 0:
    df.drop_duplicates(inplace=True)
```

```
duplicates
```

```
0
# Step 1c: Check for invalid/inconsistent va
# Check for negative numbers in 'total_cost'
negative_cost_count = (df['total_cost'] < 0)
# Summary of checks
invalid_values_summary = {
    'Negative Costs': negative_cost_count,
    }
    invalid_values_summary</pre>
```

```
{'Negative Costs': 0}
```

√ 0.0s

iscussed
tive medians
=True)
e rows
lues
-sum()

Univariate Analysis heavily right-skewed

Visitor Spendings heavily right-skewed

Observation: Wide distribution → high standard deviation.
Pitfall: Skewed target variable → issues with linear models.
Solution: Log transform to normalize distribution.

Number of Visitor clustered around 1

Observation: Most tourists travel alone → outliers up to 49 & 44.
Pitfall: Outliers affect linear models → sensitive to data range.
Solution: Robust scaling & outlier capping → females 0-5 & males 0-4 → reduces outlier impact.

Most stay < 8 Nights on Mainland & 2 Zanzibar

Observation: Most tourists stay few nights 🕞 outliers up to 145 & 61. **Pitfall:** Large values skew understanding of spending by night. Solution: Robust scaling 🕞 nights Mainland capped max. 59 & Zanzibar 15 🕞 reduces skewness.

0 500 1000 1500 2000 2500 3000 3500 4000

Count

Frequency Distribution of country

300

400

Frequency Distribution of purpose

500

600

NEW Z

Leisure and Holidays

Visiting Friends and Relatives

Meetings and Conference

Scientific and Academic

Independent

Package Tour

Volunteerir

Othe

Business

Most visitors 25-44 years of age Followed by 45-64

Most travel alone or with a spouse

Leisure & holidays **most common visit reasons**

Wildlife tourism dominates hatural reserves & parks

Most rely on friends & relatives for info Word-of-Mouth & SoMe biggest leverage

Majority prefers package tours **big spending predictor**

Most pay cash

encourage digital payments (better tracking & security)

1st Tanzanian Insights

country

rity of t	ouri.	sts
	Intr	les
300 Number of Visitors lency Distribution by Country (Top 20 Countries)	500	600

Crucial for predicting spending. Potential source of bias if not handled carefully.

Bivariate Analysis – aka – Heatmap Usually provide insights how 2 variables relate to a 3rd, e.g. spending. If linear data.

	from from from impor	
	# Ste X = d y = d	RMSE = Root Mean Squa Average magnitude of errors betwee
	X_tra # Ste linea linea	R ² = R-Squared: 0.624 = 62.4% prediction variability of mode
	<pre># Ste y_pre # RMS rmse</pre>	MAPE = Mean Absolute
	# R^2 r2 =	Interpretation of Coeffic
	# MAP mape rmse,	High RMSE & MAPE Dinear model
/	1.6s	

(7286064.300077519, 0.6240310522633432, 710.6852970446578)

are Error: 7,286,064.30 TZSen predicted & observed values.

l. 🖸 room for improvement.

Percentage Error: 710.69% predictions 710.69% off on average.

cients not best fit.

Check scatter plots, if relationships are strongly linear.

Relationships not strongly linear Nonlinear models perform better. Try RF, SVM & GB.

Advanced Models & Scientific Analysis

from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor from sklearn.svm import SVR from sklearn.model_selection import cross_val_score # Initialize models rf_model = RandomForestRegressor(random_state=42) svm_model = SVR() gbm_model = GradientBoostingRegressor(random_state=42) Model # Create models = # Initia 🧥 Random Forest results # Perfor Support Vector Machine for mode scor rmse Gradient Boosting avg_ r2_s avg

results.append((name, avg_rmse, avg_r2))

Convert results to DataFrame for easier interpretation
results_df = pd.DataFrame(results, columns=['Model', 'Average RMSE', 'Average R2'])

results_df

Average RMSE	Average R2
1.745866e+05	0.999756
1.317062e+07	-0.153609
1.220810e+05	0.999895

Hyperparameter Tuning

Max. Depth of Trees:

- Limits # of splits
- Lower value 🕞 underfitting
- High value 🕞 overfitting

Observations:

- As depth increases 🕞 score decreases
- Implies better performance (RMSE or log loss)
- Uncertainty widens 🕞 depth increases
- Indicating greater variance 🕞 higher depths.

Implications:

- Greater depths fit data more closely
- Increasing variance 📄 indicator of overfitting
- Score stabilizes after certain depth
- Diminishing returns beyond a certain depth

Min_samples_split:

- Minimum sample number to split a node
- Higher values prevent from learning fine-grained patterns (potentially noise) in the training data.

Observations:

- Model improves 🕞 score decreases
- Up to a certain value and then levels off
- Increasing split uncertainty decreases

Implications:

- Increasing split prevents overfitting by not splitting nodes with very few samples
- After certain point
 model might become too
 generalized or underfitted
 score plateau
- Reducing variance suggests that higher values of min_samples_split lead to more stable models

N_estimators:

- # of trees in Random Forest
- Higher value 🕞 more trees
- More robust model 🔜 increases computation

Observations:

- Increasing # 🕞 better score 🕞 decreasing number
- Uncertainty remains consistent

Implications:

- Adding trees increases robustness of model
- Certain point 🕞 diminishing returns
- Consistent variance 🕞 stable model performance

Min_samples_leaf:

- Minimum sample number required in leaf node
- Higher values 🕞 deter overfitting

Observations:

- Score decreases 🕞 model improves
- Plateau after a certain point
- Uncertainty relatively stable throughout

Implications:

- Increasing samples 🕞 robuster model
- Ensures leaves are meaningful data representation
- Too high values 🕞 can underfit
- Consistent variance 🕞 parameter impact consistent

1. Best Model

Random Forest & Gradient Boosting. Support Vector Machine performs poorly 🕞 discard for this analysis.

2. Overfitting

High R-Squared for RF & GB indicates overfitting. 🕞 Validate model on unseen data. 🗹

3. Complexity

RF & GB are ensemble models 🕞 more complex than linear 🕞 more computation effort 🕞 perform better with non-linear data.

4. Insights Before ML deployment – esp. with near-perfect metrics 🕞 critica

Before ML deployment - esp. with near-perfect metrics 🕞 critical to understand feature importances & ensure objectives alignment.

```
# Calculate the performance metrics for the best Random Forest model
best_rf_model = RandomForestRegressor(**best_rf_params, random_state=42)
best_rf_scores = cross_val_score(best_rf_model, X_train, y_tra
best_rf_rmse_scores = np.sqrt(-best_rf_scores)
best_rf_avg_rmse = np.mean(best_rf_rmse_scores)
best_rf_r2_scores = cross_val_score(best_rf_model, X_train, y_
best_rf_avg_r2 = np.mean(best_rf_r2_scores)
```

Update the results DataFrame with the new Random Forest mode results_df.loc[results_df['Model'] == 'Random Forest', 'Averac results_df.loc[results_df['Model'] == 'Random Forest', 'Average

```
# Create a bar plot for average RMSE and R2 metrics
plt.figure(figsize=(12, 6))
sns.barplot(x='Model', y='Average RMSE', data=results_df, pale
plt.title('Average RMSE by Model')
plt.show()
```

```
plt.figure(figsize=(12, 6))
sns.barplot(x='Model', y='Average R2', data=results_df, palett
plt.title('Average R2 by Model')
plt.show()
```

```
# Create box plots to show distribution of RMSE scores across
rf_cv_scores = cross_val_score(best_rf_model, X_train, y_trair
svm_cv_scores = cross_val_score(svm_model, X_train, y_train,
gbm_cv_scores = cross_val_score(gbm_model, X_train, y_train,
```

```
cv_scores_df = pd_DataFrame({
    'Random Forest': np.sqrt(-rf_cv_scores),
    'Support Vector Machine': np.sqrt(-svm_cv_scores),
    'Gradient Boosting': np.sqrt(-gbm_cv_scores)
})
```

```
plt.figure(figsize=(12, 6))
sns.boxplot(data=cv_scores_df, palette='viridis')
plt.title('RMSE Distribution Across CV Folds by Model')
plt.ylabel('RMSE')
plt.show()
```

	Feature	Importance
8	tour_arrangement	0.286102
0	country	0.102374
6	night_mainland	0.092218
3	total_female	0.081190
	night_zanzibar	0.067167
4	total_male	0.059006
1	age_group	0.055510
2	travel_with	0.047351
0	package_accomodation	0.039959
20	most_impressing	0.036648

- 1. The way tours are arranged **biggest impact on spending**
- 2. Visitor origin

economic conditions & currency valuation important

- 3. Nights spent longer stays ligher spendings
- 4. Total females & males

Suggests tour groups Spend more per capita

- 5. Age group Solution of the second second
- 6. Travel companions **affect spendings**
- 7. Package + accommodation **D** noteworthy factor
- 8. Most impressed **more spent**

Spendings by Travel Companions Focus on families, couples & single parents raybe friends ignore lone travellers.

Spending Distribution for Age Groups The older the tourists I the higher AND more predictable their spendings.

Activities & Spendings for Age Groups 45-64 vildlife, beach, business & conferences. 65+ vildlife, bird watching, diving, sports fishing, business & conferences.

Top 10 Activity by Origin: Doing vs. Spending What tourists did. How much they spent on it.

UK: 2nd overall + 2nd wildlife 🕞 below average \$\$\$ wildlife + Beach 🕞 encourage spending + upsell other activities! South Africans: 2nd biggest Beach group + \$\$\$ + biggest conference \$\$\$ 🕞 create packages & promos + advertise conferences!

Nights spent on mainland – by Country Longest: Mauritius, Oman, Pakistan, Scotland, Indonesia, Ghana & Nepal 🕞 Encourage spending.

Nights spent on Zanzibar – by Country Longest: Greece, Poland, Sweden, Italy, Denmark & Germany - Advertise in & encourage SoMe posts.

1st Action-Item **Child-friendly Tanzania**

Encourage single parent & family visits:

- Offer child-care services, e.g. kids clubs, family rooms, babysitter & special activities
- Create Social Media campaigns, e.g. show (single) parents with kids enjoying Tanzania
- Develop new services, e.g. family & single parent vacation packages, kid discounts, and interactive trip planning tools for kids

2nd Action-Item **Business People Promo**

- Allure business visitors to book vacations: • Create VR experiences, e.g. promos at Tanzanian business congresses, and online via business websites & LinkedIn
- Create tailored offers packages to come back with family, kid or & partner
- Offer "Alpha Animal Adventures" Premium Safaris incl. Big-5 sightings & Networking events with local businesspeople

3rd Action-Item Deluxe Lifestyle Web Series

Tourism data shows many spending outliers visiting Tanzania – aka – rich people.

We create a web series showcasing deluxe events in premium locations, e.g. Zanzibar.

We invite VIPs & SoMe influencers from high **GDP** countries to meet Tanzanian stars, artists, musicians, etc.

4th Action-Item Beyond Big-5 Offers

Encourage more bookings & upsell tourists:

- Highlight underutilised activities & sights,
 e.g. scuba diving, bird-watching, sports fishing, etc.
- Create new offers, e.g. Hot Air Ballooning in Serengeti or at Mount Kilimanjaro, Cultural Immersion Workshops, Artisan Market visits, private dinners in Ngorongoro Crater, etc.

n

5,

5th Action-Item Target Profitable Travellers

- **Optimise marketing ROI & increase profits by** focussing on:
- Most lucrative tourists, e.g. couples & groups over 45 years of age, single parents & families.
- Most lucrative origins, e.g. USA, UK, Europe, Poland, Australia, Canada, Switzerland & Japan.

6th Action-Item Boost Travel Storytelling

Amplify Word-of-Mouth & SoMe sharing by:

- Create WOW experiences, e.g. draw paintings/postcards with baby elephants, cage dive with crocodiles, etc.
- Install "Wi-Fi in the Wild" to enable kids without roaming to live-stream on SoMe
- Launch Social Media Challenges, e.g. Best Sunset Photo, Dance with Locals, etc.

Thank you for your time Any Questions?

Elias Kouloures

COS

Creative Data Scientist, Prompt Engineer & GenAl Expert

\$+491602448800

elias.kouloures@gmail.com

EliasKouloures.com