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Data Cleaning

a)Handle missing values 

b) Check for outliers 

c) Encode categorical variables 

d) Normalize numerical features
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Univariate Analysis heavily right-skewed

Evenly distributed data Tanzania Tourism data
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Visitor Spendings heavily right-skewed

Observation: Wide distribution ➡ high standard deviation. 

Pitfall: Skewed target variable ➡ issues with linear models. 

Solution: Log transform to normalize distribution.

Logarithmically 

transformed
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Number of Visitor clustered around 1

Observation: Most tourists travel alone ➡ outliers up to 49 & 44. 

Pitfall: Outliers affect linear models ➡ sensitive to data range. 

Solution: Robust scaling & outlier capping ➡ females 0–5 & males 0–4 ➡ reduces outlier impact.
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Most stay <8 Nights on Mainland & 2 Zanzibar

Observation: Most tourists stay few nights ➡ outliers up to 145 & 61. 

Pitfall: Large values skew understanding of spending by night. 

Solution: Robust scaling ➡ nights Mainland capped max. 59 & Zanzibar 15 ➡ reduces skewness.
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Most visitors 25-44 years of age  

➡ followed by 45-64 

Most travel alone  

➡ or with a spouse 

Leisure & holidays  

➡ most common visit reasons 

Wildlife tourism dominates  

➡ natural reserves & parks 

Most rely on friends & relatives for info  

➡ Word-of-Mouth & SoMe biggest leverage 

Majority prefers package tours  

➡ big spending predictor 

Most pay cash  

➡ encourage digital payments (better tracking & security)

1st Tanzanian Insights
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Majority of tourists 
from few countries

Crucial for predicting spending.  
Potential source of bias if not handled carefully.
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Bivariate Analysis – aka – Heatmap
Usually provide insights how 2 variables relate to a 3rd, e.g. spending. ➡ If linear data.

Zoom in – by removing 

countries of origin
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RMSE = Root Mean Square Error: 7,286,064.30 TZS
Average magnitude of errors between predicted & observed values. 

R2 = R-Squared: 0.624 = ✋🪙
62.4% prediction variability of model. ➡ room for improvement. 

MAPE = Mean Absolute Percentage Error: 710.69% 
High error ➡ model not accurate ➡ predictions 710.69% off on average. 

Interpretation of Coefficients
High RMSE & MAPE ➡ linear model not best fit.

2.768 € 

2,911 $ 

Check scatter plots, 
if relationships are 
strongly linear.
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Relationships not strongly linear 
Nonlinear models perform better. ➡ Try RF, SVM & GB.
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😬😫🤬😭🤯

Advanced Models & Scientific Analysis

Elia
sK

ou
lou

re
s.c

om



Hyperparameter Tuning
Max. Depth of Trees: 

• Limits # of splits 

• Lower value ➡  underfitting 

• High value ➡  overfitting 

Observations: 

• As depth increases ➡  score decreases 

• Implies better performance (RMSE or log loss) 

• Uncertainty widens ➡  depth increases 

• Indicating greater variance ➡  higher depths. 

Implications: 

• Greater depths fit data more closely 

• Increasing variance ➡  indicator of overfitting 

• Score stabilizes after certain depth 

• Diminishing returns beyond a certain depth

N_estimators: 

• # of trees in Random Forest 

• Higher value ➡  more trees 

• More robust model ➡  increases computation 

Observations: 

• Increasing # ➡  better score ➡  decreasing number 

• Uncertainty remains consistent 

Implications: 

• Adding trees increases robustness of model 

• Certain point ➡  diminishing returns 

• Consistent variance ➡  stable model performance 

Min_samples_split: 

• Minimum sample number to split a node 

• Higher values prevent from learning fine-grained 

patterns (potentially noise) in the training data. 

Observations: 

• Model improves ➡   score decreases 

• Up to a certain value and then levels off 

• Increasing split ➡  uncertainty decreases 

Implications: 

• Increasing split ➡  prevents overfitting by not 

splitting nodes with very few samples 

• After certain point ➡  model might become too 

generalized or underfitted ➡  score plateau 

• Reducing variance suggests that higher values of 

min_samples_split lead to more stable models 

Min_samples_leaf: 

• Minimum sample number required in leaf node 

• Higher values ➡  deter overfitting 

Observations: 

• Score decreases ➡  model improves 

• Plateau after a certain point 

• Uncertainty relatively stable throughout 

Implications: 

• Increasing samples ➡  robuster model 

• Ensures leaves are meaningful data representation 

• Too high values ➡  can underfit 

• Consistent variance ➡  parameter impact consistent
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1. Best Model
Random Forest & Gradient Boosting. Support Vector Machine performs poorly ➡ discard for this analysis. 
   

2. Overfitting
High R-Squared for RF & GB indicates overfitting. ➡ Validate model on unseen data. ✅ 

3. Complexity
RF & GB are ensemble models ➡ more complex than linear ➡ more computation effort ➡ perform better with non-linear data. 

4. Insights
Before ML deployment – esp. with near-perfect metrics ➡ critical to understand feature importances & ensure objectives alignment.

X

X
X
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1. The way tours are arranged 

➡ biggest impact on spending 

2. Visitor origin 

➡ economic conditions & currency valuation ➡ important 

3. Nights spent  

➡ longer stays ➡ higher spendings 

4. Total females & males  

➡ suggests tour groups ➡ spend more per capita 

5. Age group  

➡ different spending habits & purposes for visit 

6. Travel companions  

➡ affect spendings 

7. Package + accommodation  

➡ noteworthy factor 

8. Most impressed  

➡ more spent
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Spendings by Travel Companions
Focus on families, couples & single parents ➡ maybe friends ➡ ignore lone travellers. 

X
Elia

sK
ou

lou
re

s.c
om



Spending Distribution for Age Groups
The older the tourists ➡ the higher AND more predictable their spendings.
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Activities & Spendings for Age Groups
45-64 ➡ wildlife, beach, business & conferences. 
65+ ➡ wildlife, bird watching, diving, sports fishing, business & conferences.
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Top 10 Activity by Origin: Doing vs. Spending
What tourists did. ↔ How much they spent on it.

USA: Most overall + most Wildlife + most $$$ wildlife & conferences ➡ upsell all non-wildlife activities + advertise on Conferences! 

UK: 2nd overall + 2nd wildlife ➡ below average $$$ wildlife + Beach  ➡ encourage spending + upsell other activities! 

Italiens: 3rd overall + most Beach visitors + $$$ + 5th biggest wildlife $$$ + non existent otherwise ➡ encourage other activities! 

South Africans: 2nd biggest Beach group + $$$ + biggest conference $$$ ➡ create packages & promos + advertise conferences!
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Nights spent on mainland – by Country
Longest: Mauritius, Oman, Pakistan, Scotland, Indonesia, Ghana & Nepal ➡ Encourage spending. 
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Nights spent on Zanzibar – by Country
Longest: Greece, Poland, Sweden, Italy, Denmark & Germany ➡ Advertise in & encourage SoMe posts.
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1st Action-Item

Child-friendly Tanzania

Encourage single parent & family visits: 

• Offer child-care services, e.g. kids clubs, 

family rooms, babysitter & special activities 

• Create Social Media campaigns, e.g. show 

(single) parents with kids enjoying Tanzania 

• Develop new services, e.g. family & single 

parent vacation packages, kid discounts, and 

interactive trip planning tools for kids
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2nd Action-Item

Business People Promo

Allure business visitors to book vacations: 

• Create VR experiences, e.g. promos at 

Tanzanian business congresses, and online via 

business websites & LinkedIn 

• Create tailored offers – packages to come 

back with family, kid or & partner 

• Offer „Alpha Animal Adventures“ – Premium 

Safaris incl. Big-5 sightings & Networking 

events with local businesspeople
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3rd Action-Item

Deluxe Lifestyle Web Series

Tourism data shows many spending outliers 

visiting Tanzania – aka – rich people. 

We create a web series showcasing deluxe 

events in premium locations, e.g. Zanzibar. 

We invite VIPs & SoMe influencers from high 

GDP countries to meet Tanzanian stars, artists, 

musicians, etc.Elia
sK
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4th Action-Item

Beyond Big-5 Offers

Encourage more bookings & upsell tourists: 

• Highlight underutilised activities & sights, 

e.g. scuba diving, bird-watching, sports 

fishing, etc. 

• Create new offers, e.g. Hot Air Ballooning in 

Serengeti or at Mount Kilimanjaro, Cultural 

Immersion Workshops, Artisan Market visits, 

private dinners in Ngorongoro Crater, etc. 
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5th Action-Item

Target Profitable Travellers

Optimise marketing ROI & increase profits by 

focussing on: 

• Most lucrative tourists, e.g. couples & groups 

over 45 years of age, single parents & families. 

• Most lucrative origins, e.g. USA, UK, Europe, 

Poland, Australia, Canada, Switzerland & 

Japan.Elia
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6th Action-Item

Boost Travel Storytelling

Amplify Word-of-Mouth & SoMe sharing by: 

• Create WOW experiences, e.g. draw 

paintings/postcards with baby elephants, 

cage dive with crocodiles, etc. 

• Install „Wi-Fi in the Wild“ – to enable kids 

without roaming to live-stream on SoMe 

• Launch Social Media Challenges, e.g. Best 

Sunset Photo, Dance with Locals, etc.
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Thank you for your time

Any Questions?

📞 +491602448800 

💌 elias.kouloures@gmail.com 

👀 EliasKouloures.com

Elias Kouloures
Creative Data Scientist, Prompt Engineer & GenAI Expert
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